HDTSA - High Dimensional Time Series Analysis Tools
An implementation for high-dimensional time series
analysis methods, including factor model for vector time series
proposed by Lam and Yao (2012) <doi:10.1214/12-AOS970> and
Chang, Guo and Yao (2015) <doi:10.1016/j.jeconom.2015.03.024>,
martingale difference test proposed by Chang, Jiang and Shao
(2023) <doi:10.1016/j.jeconom.2022.09.001>, principal component
analysis for vector time series proposed by Chang, Guo and Yao
(2018) <doi:10.1214/17-AOS1613>, cointegration analysis
proposed by Zhang, Robinson and Yao (2019)
<doi:10.1080/01621459.2018.1458620>, unit root test proposed by
Chang, Cheng and Yao (2022) <doi:10.1093/biomet/asab034>, white
noise test proposed by Chang, Yao and Zhou (2017)
<doi:10.1093/biomet/asw066>, CP-decomposition for matrix time
series proposed by Chang et al. (2023)
<doi:10.1093/jrsssb/qkac011> and Chang et al. (2024)
<doi:10.48550/arXiv.2410.05634>, and statistical inference for
spectral density matrix proposed by Chang et al. (2022)
<doi:10.48550/arXiv.2212.13686>.